Can Multi-Touch Attribution (MTA) tell you which parts of your marketing are not working?

multi-channel attribution in marketing

The origins of multi-touch attribution (MTA) were in the digital space, as a result of advertising spend transitioning away from traditional “offline ads” to digital media and channels which were deemed to be more accountable. Journeys within a client’s website, or between websites, could be stitched together and the resulting orders joined back to customers and their orders.

Now that the removal of third-party cookies is going to remove much of the stitching between websites, unless you are working with a collaborative data solution that allows this to take place, you are left just with customer journeys within your own website in full view.

These journeys may however include affiliates, referrers, digital ad campaigns, PPC, and direct search so you will at least know where the visitors came from if not the ad impressions they had been served to get them there.

However, we believe that there is still a great deal of merit in MTA, but not when it is restricted just to online events. (There is also the huge consideration that some of the large analytics platforms use sampled data and not 100% raw data which means the more you dig, the less you see).

Estimates vary about how much of advertising spend is digital, but the consensus appears to be around 55% currently, and that leaves 45% non-digital which is clearly far too much to ignore, much as Google would like us to. We also suspect that with the removal of some of the programmatic advertising volume, the digital proportion is likely to reduce down, perhaps to around 50%.

There is absolutely no reason why MTA should ignore the non-digital channels; but it means that you require the technology to joint it all together at a customer and order level. This is most effectively achieved using a customer data platform which is specifically designed to join browsing activity with off-line into a single customer view.

The non-digital ‘touches’, we prefer to call them ‘events’, can for instance include emails opened, text messages, call centre contacts, retail visits, and direct mail. These are all direct events, but on top of these are non-direct advertisements such as TV, which we discuss below.

There is a lot of unscientific opinionizing about the best approach to weighting events before an order. We are confident that we have found a reasonably good statistical solution for this. It uses a mix of Markov chains and survival curve statistics to give the weightings to any specific set of events. This approach does not presume anything about first or last touch, but rather looks at the evidence presented when the events have all been joined together in a single customer view, together with your customer and order data.

To deal with the non-direct channels like TV, the more ambitious will also want to build econometric models which reveal the overall effect on demand of all channels, direct and indirect, when working in combination. Econometric models often get a bad press as being unresponsive to short term changes in consumer behaviour, and not being granular enough in their spending recommendations, but they are the best tool we have to give the non-direct media their fair share of the credit for sales made.

Techniques now exist to align econometric models with multi-touch attribution so that, in effect, value initially credited to direct channels can be reattributed back to the indirect channels; this usually has a significant influence on the overall share of demand given to the direct channels.

So, to present what we have been describing diagrammatically, a full attribution process is going to look like this:

full multi-touch attribution process diagram

One of the often overlooked, and we believe very significant benefits of MTA, when it is sitting on a single customer view, is that it can be cut by customer type. The simplest cut is to distinguish between what is bringing new customers versus existing. But the cut can be for any customer segment, like high value versus low value customers, or purchasers of particular types of merchandise.

multi-touch attribution view of new vs existing customers

Multi-touch attribution can tell you a lot about how your marketing works, but only when you look at all of your online and offline channels in combination. And for many advertisers using indirect channels like TV, then it becomes important when possible to align MTA with econometrics.

In so far as we only look at events prior to a sale we will learn nothing about what doesn’t generate a positive outcome; however, if we take a look at all browsing events, we can start to examine the probability of an event leading, or not leading, to a sale.

There are two reasons why this is valuable information, although unfortunately often ignored. First, because knowing the probability of say a Facebook advert leading to a sale brings a sense of realism about advertising there, but also because serving people adverts in which they are not interested does damage to your brand.

Back in the heyday of direct mail, people were so fed up with the quantities that kept on arriving that they called it junk mail, and often had stickers on their post boxes asking for it not to be delivered. (Unfortunately, the postman had no choice but to pop it in their box).

PPC Protect estimates that in 2021 the average person (we assume in the US) will see up to 10,000 ads per day, whereas in 2007 estimates were only at 5,000 ads per day.

Common sense suggests that this must be way over the top of what is either necessary or enjoyable, and people will increasingly assert their objections to it.

Clearly brands that focus on the relevance of their advertisements will create a much more favourable impression than those that just focus on volume.

We have started to investigate browsing behaviour in terms of its likelihood to lead to a sale, with the following result:

Probability of browser moving to and from events and a sale
Probability of browser moving to and from events and a sale

To explain how this table works (and it was built using actual online and offline event data) it shows the probability of a person moving either from one event channel to another, or to a sale. So, if you start with picking a channel on the Y or vertical axis, you can then move along the row to view the probability of a customer moving to the next browsing state. For instance, someone coming to your website from a social network has a 96% probability of doing nothing further, and a 0.55% probability of being converted to a sale without engaging with additional channels. They also have a 0.67% chance of moving next to a search engine, whence they will have a 3.3% probability of making a purchase. However, someone receiving a campaign has a 6.5% probability of conversion without using other channels, and a 6.7% probability of moving next to a search engine.

So, in conclusion, we suggest that there is a strong role for multi-touch attribution, post third party cookies, with or without econometrics, and another new role for data science in investigating what we might call dark advertising, the stuff you see, but which makes little or a negative impression.

Read more about how Unifida’s marketing attribution works and what it can deliver.


UniFida logo

UniFida is the trading name of Marketing Planning Services Ltd, a London based technology and data science company set up in 2014. Our overall aim is to help organisations build more customer value at less marketing cost.

Our technology focus has been to develop UniFida. Data science business comes both from existing users of UniFida, and from clients looking to us to solve their more complex data related marketing questions.

Marketing is changing at an explosive speed. Our ambition is to help our clients stay empowered and ahead in this challenging environment.


Are you in the dark about your omnichannel performance?

attribution share to measure omnichannel performance
Chart showing the attribution share in an omnichannel environment

Marketing mix attribution is often one of the biggest problems a marketer can face when trying to measure omnichannel performance. How to fathom out in an omnichannel environment how much each channel is really contributing?

And how much for instance are they contributing to new customer recruitment v. existing customer sales?

Google has a solution for attributing what goes on in the digital space, but this leaves out important areas like emails opened, catalogues received, SMS messages, outbound calling, even retail visits.

So, we set about developing ADEE, or Algorithmic Direct Event Attribution.

For us it’s the culmination of a journey which we began by solving the problem of attributing orders to events, where clients were using both online and offline channels.

Curiously, nobody else appeared to be doing this.

We needed to create a result that made sense of the relative contributions of all the online and offline events that took place before each order is placed. (By the way the average is around five per order).

We needed to apply a fair weighting to these events that described the influence they had on each eventual order.

Then we had to add up all the events to the channels in which they took place to understand the value contributed by each channel.

Finally, we needed to let our clients decide whether they wanted to look at all customer orders, or for instance just new customers, or customers buying a particular product category.

I am delighted to say that we ended up creating ADEE!

If you would like me to send you our white paper on ADEE then please email us on [email protected].

It could transform your understanding of the true contribution that each of your online and offline channels are making.


UniFida logo

UniFida is the trading name of Marketing Planning Services Ltd, a London based technology and data science company set up in 2014. Our overall aim is to help organisations build more customer value at less marketing cost.

Our technology focus has been to develop UniFida. Our data science business comes both from existing users of UniFida, and from clients looking to us to solve their more complex data related marketing questions.

Marketing is changing at an explosive speed, and our ambition is to help our clients stay empowered and ahead in this challenging environment.


Exactly how much do online and offline channels contribute to sales?

Do you really know exactly how much each of your online and offline channels are contributing to your sales?

The blunt truth is that the great majority of marketers don’t!

Google for instance claims that businesses make an average of $2 for every $1 spent on Google Ads, but this is just a blatant case of Google marking its own homework. Are they saying that $1 Google Ads caused the $2 worth of sales, or just that there is some form of observed correlation? And how do they account for the impact of all the other forms of advertising from TV to outdoor to press to email?

Given the billions that hang on decisions about how to allocate marketing budgets across different online and offline channels, we felt that it was essential to work on giving our clients the tools and the knowledge to properly support these important decisions.

We started with some key assumptions:

– That decisions to purchase are necessarily complex and driven by multiple factors. Many of these factors like brand awareness cannot be recorded in the context of an individual sale, but many can be, and for those that are, we should look at all the known recordable events before a sale, and certainly not just online events, or worse still, just last clicks.

– What we call recordable events are activities like receipt of a catalogue, opening an email, visiting a website from a social media advert, or using Google Ads to find a website. Some of these events are driven by the customer like natural search, and some are driven by the vendor like receiving a catalogue.

– That we would assemble all the recordable online and offline events before each sale and use these as the dataset from which to analyse the true impact of different channels and different time intervals between an order and an event.

– That having overcome the challenge of collecting all the online and offline events together, we would focus our analysis on the central question of how to weigh the different types of events. Intuition tells us that an event 60 days before an order may have played a smaller role in the decision to purchase than one on the same day as the order, but the question we needed to answer was by how much? Also, should we give different weightings to different types of event? Is an opened email more or less important than a website visit happening as a result of a click through from a Google Ad?

– We do not want to suggest that marketers should ignore unrecordable events such as TV viewing or driving past an outdoor lightbox. Rather that their effects need to be analysed using different techniques like time series analysis, and that in so far as credit is given to recordable events it should be shared with the credit due to unrecordable events.

We have used orders and recorded events from two very different retailers to provide the data sets for our analysis. The first and surprising discovery was to find just how many recordable events actually happened. One reason for this is that customers may make multiple visits to a website before purchasing or open an email multiple times. The following table shows the number of recorded events that preceded each order in a 90-day time window:

the number of online and offline events resulting in sales orders

The analysis is ongoing, and we are aiming to publish a white paper on it in August, but there are three important initial findings that we can share:
– different channels should carry different overall weights, and we can analyse what they should be
– that each channel has its own time decay curve. In other words, the impact of events in one channel will wear off more quickly than for another channel.
– that the set of weightings used for new recruits should be different to those used for existing customers

The final results will include quantification of these findings.

If you would like us to share the white paper with you when it is ready please email us. It will be free for our newsletter recipients who order it in advance, but will be sold to others.

And if you would like meanwhile to have a chat to us about how to solve your own marketing mix attribution problem, we would be delighted to discuss, so please get in touch.

 


UniFida logo

UniFida is the trading name of Marketing Planning Services Ltd, a London based technology and data science company set up in 2014. Our overall aim is to help organisations build more customer value at less marketing cost.

Our technology focus has been to develop UniFida. Our data science business comes both from existing users of UniFida, and from clients looking to us to solve their more complex data related marketing questions.

Marketing is changing at an explosive speed, and our ambition is to help our clients stay empowered and ahead in this challenging environment.


Attaining a multi-touch attribution strategy

‘Attaining a multi-touch attribution strategy that works is like looking for the holy grail’. This is one of the conclusions in a report just published by the CallRail Research Unit (click here to download the report).

A key finding from their survey was that ‘36% of marketers say that lack of insights into the effectiveness of tactics, or an effective attribution capability, is the most damaging factor to their marketing efforts; a further 25% ranked it the second most significant factor’.

It so happens that we have recently completed developing a multi-touch attribution capability and it’s now part of UniFida.

Attaining a multi-touch attribution strategy enables you to understand the relative influence, and ROI, of all your online and offline marketing channels and media.

We would like to give you a live demo and show you how it works. If you can spare us 30 minutes, please send us an email and suggest a convenient time for you.

 


UniFida logo

UniFida is the trading name of Marketing Planning Services Ltd, a London based technology and data science company set up in 2014. Our overall aim is to help organisations build more customer value at less marketing cost.

Our technology focus has been to develop UniFida. Our data science business comes both from existing users of UniFida, and from clients looking to us to solve their more complex data related marketing questions.

Marketing is changing at an explosive speed, and our ambition is to help our clients stay empowered and ahead in this challenging environment.